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Testing for nonlinearity in irregular fluctuations with long-term trends
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We describe a method for investigating nonlinearity in irregular fluctuations (short-term variability) of time
series even if the data exhibit long-term trends (periodicities). Such situations are theoretically incompatible
with the assumption of previously proposed methods. The null hypothesis addressed by our algorithm is that
irregular fluctuations are generated by a stationary linear system. The method is demonstrated for numerical
data generated by known systems and applied to several actual time series.
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I. INTRODUCTION

To investigate nonlinearity in irregular fluctuations, vari-
ous surrogate data methods have been proposed: the Fourier
transform (FT), the amplitude adjusted Fourier transform
(AAFT), and the iterative AAFT (IAAFT) algorithms [1,2].
Each of these methods is now widely used. All of these tech-
niques are linear surrogate methods [3,4], because they are
based on a linear process and address a linear null hypoth-
esis. These methods assume stationarity of the data under
consideration (that is, data with no trend) as in Fig. 1(a).
However, time series exhibiting irregular fluctuations and
long-term trends (periodicities) like that shown in Figs.
1(b)-1(d) abound in the real world. Unfortunately, such non-
stationary data are theoretically incompatible with the as-
sumption of linear surrogate tests, and the nonstationarity is
therefore very likely to lead to incorrect results [1,2]. Deal-
ing with such nonstationary data is difficult.

To investigate irregular fluctuations with long-term trends,
a common approach is to separate the irregular fluctuations
and long-term trends or to split the time series into segments
that can be considered nearly stationary [5]. However, such
filtering is not always welcomed because the processed data
can lead to spurious results [6]. Hence, it will be preferable,
if possible, to investigate features of irregular fluctuations
without such pre-processing. Until recently, no surrogate
method has been able to tackle such data. Nakamura and
Small have proposed the small shuffle surrogate (SSS)
method to investigate whether there is some kind of dynam-
ics in irregular fluctuations, even if they are modulated by
long-term trends or periodicities [7]. However, the SSS
method cannot indicate whether data are linear or nonlinear
because both linear and nonlinear data have some kind of
dynamics and are therefore consistent with the alternative
hypothesis. In this paper, we introduce a method to investi-
gate whether there is nonlinearity in irregular fluctuations
(short-term variability) even if they exhibit long-term trends.
The method is an intuitive modification of previously pro-
posed linear surrogate methods.

The proposed method is composed of two premises: (i)
frequencies of irregular fluctuations are higher than those of
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long-term trends and (ii) when data are linear, if the power
spectrum is preserved even if all of the phases are different,
we can treat such data as linear data from the same popula-
tion. This superposition principle is valid only for linear data
and not for nonlinear data. We focus our attention on these
points and propose a method using this idea. The purpose of
our method is to investigate nonlinearity in irregular fluctua-
tions, even if they have long-term trends.

After describing our technique, we will present our choice
of discriminating statistic. Then, we will apply the algorithm
to two cases using simulated time-series data: (i) data with
no trend (this case can also be adequately addressed with the
previously proposed linear surrogate methods); (ii) data hav-
ing long-term trends (this case is not consistent with the
linear surrogate methods). In each case, the data we use are
both noise-free and contaminated by 10% Gaussian observa-
tional noise. Based on the results, we apply the method to
several actual time series: nuclear magnetic resonance
(NMR) laser data, monthly global average temperature
(MGAT), and monthly sunspot numbers (MSN).

II. CURRENT TECHNOLOGIES

The primary contribution of this paper is an alternative
method of producing surrogate data sets by which we can
investigate nonlinearity in irregular fluctuations even if they
exhibit long-term trends. The previously proposed linear sur-
rogate methods (FT, AAFT and TAAFT) are designed to gen-
erate flawless linear data [1,2]. The basic strategy of these
methods is as follows. One first applies the Fourier transform
to the original data, randomizes the phases, and then inverts
the transform using the randomized phases. In these meth-
ods, all phases are randomized so as to eliminate any non-
linearity in data and then the data can be treated as com-
pletely linear [23].

Further concerns have been raised over the application of
the AAFT surrogate for almost periodic data (data with
strong periodic components) [8]. It might be possible to de-
scribe periodic behavior by a special case of the linear au-
toregressive moving average (ARMA) process. However,
time series exhibiting such regular persistent fluctuations are
inconsistent with linear noise [9].

Hence, although the linear surrogate methods are effective
for irregular fluctuations, the methods are not effective for
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FIG. 1. Segments of four time series examined in this paper: (a)
nuclear magnetic resonance (NMR) laser data, (b) monthly global
average temperature (MGAT) from September 1920 to December
2005, (c) monthly sunspot numbers (MSN) from January 1749 to
10 August 2004, and (d) x component of the Tkeda map data with
artificial trends.

data that exhibit long-term trends because the methods can-
not preserve such trends.

III. A DIFFERENT ALGORITHM

It is important that surrogate data are sufficiently similar
to the original. That is, when data have long-term trends, it is
preferable to preserve those trends. To investigate nonlinear-
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ity in irregular fluctuations (especially when they are modu-
lated by long-term trends or periodicities), we want to de-
stroy nonlinearity in irregular fluctuations and preserve the
global behaviors (trends or periodicities). When data exhibit
irregular fluctuations and long-term trends, the power spec-
trum is usually like Fig. 2. In particular, the data in Figs. 1(b)
and 1(c) have similar spectra to that of Fig. 2 (see Sec. VII).
Figure 2 indicates that the data have large peaks of power in
the lower-frequency domain and power in the higher-
frequency domain is almost white. From this figure we con-
clude that the higher-frequency domain is probably domi-
nated by irregular fluctuations. This implies that even if we
randomize phases in the higher-frequency domain f, (see
Fig. 2), the influence for long-term trends will not be signifi-
cant. Hence, to generate data that can fulfill such conflicting
conditions (destroying local structures or correlations in
short-term variability and preserving long-term behaviors),
we randomize phases only in the higher-frequency domain
and do not alter low-frequency phases. In this way, long-term
trends are preserved in these unaltered low frequencies. This
approach is in contrast to previously proposed linear surro-
gate methods, where all phases are randomized. We call our
method the “truncated Fourier transform surrogate (TFTS)
method.” Since some phases are untouched, TFTS data may
still have nonlinearity. However, it is possible to discriminate
between linear and nonlinear data. In our approach, we take
advantage of different features of linear and nonlinear data
[10]. This is possible because the superposition principle is
valid only for linear data. That is to say, when data are non-
linear, even if the power spectrum is preserved completely,
the inversed Fourier transform data using randomized phases
will exhibit a different dynamical behavior. Hence, the null
hypothesis addressed by our algorithm is that irregular fluc-
tuations are generated by a stationary linear system. We note
that a similar idea (that some phases are untouched to pre-
serve periodicities) is described in [11], however the author
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FIG. 2. (Color online) The estimated power spectrum of the
artificial data shown in Fig. 1(d), where we use 4096 data points.
Note the logarithmic scale. We randomize phases in the higher-
frequency domain f,, and other phases are untouched. The param-
eter f, is the ratio of high-frequency domain to the whole frequency
domain. For example, when phases with frequency between 1500
and 2000 are randomized (that is, 500 higher-frequency domain),
fe 18 500/2000, that is, f,=0.25. We note that when showing a
power spectrum, these usually correspond to each frequency with
units of hertz (Hz) on the horizontal axis. In this paper, to explain
our proposed method more easily we use an arbitrary scale that
corresponds with the number of data points.
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did not intend to investigate nonlinearity in irregular fluctua-
tions with long-term trends.

Frequency domain to randomize phases

Obviously, the surrogate data generated by our method are
influenced primarily by the choice of frequency domain f,
[24] (Fig. 2). If the domain is too narrow, the randomization
of phases is very little or not at all, and then the TFTS data
are almost identical to the original data. In this case, even if
there is nonlinearity in irregular fluctuations, we may fail to
detect nonlinearity. Conversely, if the domain is too wide, the
number of randomized phases is large, and the TFTS data are
almost the same as the previously proposed linear surrogate
data and the long-term trends are not preserved. In this case,
even if there is no nonlinearity in irregular fluctuations, we
may wrongly judge that there is nonlinearity in irregular
fluctuations. That is, for data with trends, larger values are
not appropriate, because the global behavior of the original
data is lost. Hence, the smaller the domain the better, pro-
vided the domain can destroy local structures and preserve
the long-term behavior.

However, we usually cannot determine an adequate value
for f, a priori. It clearly depends on the nature of the data
and the length of the time series. Hence, we increase f, to
randomize the phases from higher domain to lower domain
step by step, for example by every 0.05 or 0.1. We continue
until linearity and long-term trends are preserved in the sur-
rogate data. We describe the stopping criterion in detail in
Sec. V C.

It should be noted that there is a possibility that only
when all phases are randomized can nonlinearity in irregular
fluctuations be detected. However, our proposed method
does not randomize all phases as mentioned above. Hence,
our algorithm clearly fails to detect the nonlinearity for such
data. Hence, even if the results obtained by applying our
method indicate that our null hypothesis is not rejected (that
is, nonlinearity in irregular fluctuations cannot be detected),
we still cannot get past the possibility that the irregular fluc-
tuations include nonlinearity. However, if the null hypothesis
is rejected, it will be strong evidence that there is some kind
of nonlinearity in the irregular fluctuations.

IV. THE FOURIER TRANSFORM PROBLEM

There is a problem with linear surrogate algorithms using
the Fourier transform. This problem is related to the Fourier
transform rather than linear surrogate algorithms themselves.
Any implementation of the discrete Fourier transform as-
sumes that the time series under consideration is periodic
with some finite period. However, this is not always the case.
When there is a large difference between the first and last
points as in Figs. 1(b)-1(d), the Fourier transform will treat
this as a sudden discontinuity in the time series. As a result,
this will introduce significant spurious high-frequency power
into the power spectrum—a critical problem when the ran-
domization is centered only on the high-frequency part. This
so-called wraparound effect introduces significant bias in the
estimated linear properties of the power spectrum [12]. Thus,
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if we use surrogate data generated in this way, we may
wrongly judge the existence of nonlinearity in irregular fluc-
tuations. In particular, when data exhibit long-term trends,
the end-point mismatch is rather common and the problem is
considerable.

To ameliorate this artifact, when we calculate the power
spectrum of such data, we symmetrize the original data first.
By this procedure, there is no end-point mismatch in the
data. The Fourier transform process is then not critically af-
fected by the wraparound effect. Other operations are the
same as the TFTS method. Hence, we call the method the
symmetrized TFTS (STFTS) method (for more details of the
wraparound effect, see, e.g., [9,11,12]). We apply the TFTS
method to data with no trend or data with long-term trends
when there is no strong end-points mismatch, and STFTS
method to data with long-term trends when there is an end-
points mismatch.

We note that we use the IAAFT algorithm to apply our
idea in this paper, however it is possible to use the FT and
AAFT algorithms directly. The reason why we use the
IAAFT method is that IAAFT surrogate data have the same
probability distribution (rank distribution) as the original
data, whereas FT surrogate data do not, although the power
spectrum of the FT surrogate is the same as that of the origi-
nal data. Also, IAAFT surrogate data have much lower de-
viation of its power spectrum from the original. More details
concerning linear surrogate methods and the relevant prob-
lems may be found elsewhere [4,9,11-13].

V. HOW TO REJECT A NULL HYPOTHESIS

Discriminating statistics are necessary for hypothesis test-
ing. After calculation of the statistics, we need to inspect
whether the null hypothesis shall be rejected. Also, we need
to inspect whether linearity and long-term trends are pre-
served in surrogate data.

A. The discriminating statistics

Dynamical measures are often used as discriminating sta-
tistics. The correlation dimension [14] or a Lyapunov expo-
nent [15] are popular choices. To estimate these, we first
need to reconstruct the underlying attractor. For this purpose,
a time-delay embedding reconstruction is usually applied
[16]. The method is most useful when the data exhibit only
one characteristic time scale [17]. The method is less effec-
tive for data exhibiting irregular fluctuations and long-term
trends. This is because a smaller time delay is necessary to
treat irregular fluctuations and a larger time delay is neces-
sary to treat long-term trends. At the moment, there is no
good method to embed such data.

We choose to use the average mutual information (AMI)
as a discriminating statistic [15]. AMI is a nonlinear version
of autocorrelation (AC) on a time series. It can answer the
following question: On average, how much does one learn
about the future from the past? We consider different data
realizations from the same population to have the same in-
formation flow so that the behavior of the AMI is the same.
Furthermore, as we do not need to embed data to estimate

026205-3



NAKAMURA, SMALL, AND HIRATA

AMI, we can avoid the difficulties associated with embed-
ding.

It is widely observed that estimating AMI is difficult [18].
The major reason is that it is not easy to estimate the under-
lying probability distribution reliably. To reduce this prob-
lem, a new method, using an adaptive partition, has been
proposed [19]. However, our surrogate data have the same
probability distribution (rank distribution) as the original
data. In this case, we consider that the influence due to using
different data (the original data and the surrogate data) for
estimating the joint probability distribution is not large, and
we find that there is no significant bias between the estimated
joint probability distribution of the original and surrogate
data. Hence, we expect that it is relatively straightforward to
compare the AMI of the original data and the surrogate data.

B. Monte Carlo hypothesis testing

After calculation of the test statistic for both data and
surrogates, we need to inspect whether a null hypothesis
shall be rejected or not. If there is a sufficient difference
between the original and surrogate data, the null hypothesis
is rejected. In this case, we consider that the original and the
surrogate data did not come from the same population. If
there is no significant difference, one may not reject the null
hypothesis. In this case, we consider that the original and the
surrogate data may come from the same population. We em-
ploy Monte Carlo hypothesis testing and check whether an
estimated statistic of the original data falls within or outside
the distribution of the surrogate data [20]. When the statistics
fall within the distribution of the surrogate data, the null
hypothesis may not be rejected. We generate 99 surrogate
data and hence the significance level is 0.01 for a one-sided
test.

It should be noted that although the multiple comparison
problem is common in surrogate data applications, we show
plots of the AMI as a function of time lag (in other words,
the variation of the AMI with lag is shown). However, in all
cases the hypothesis testing is robustly conducted for lag 1
only. In fact, we expect that it is only a meaningful test
statistic for small lag, because the AMI of the original and
surrogate data will coincide for large lag. The plots of the
AMI as a function of lag are provided for information only.

C. Stopping criterion for increasing frequency domain

We usually cannot know the adequate size of the fre-
quency domain f, over which to randomize phases. It clearly
depends on the nature of the data and the length of the time
series. To know whether linearity and long-term trends in the
original data are preserved in surrogate data, it is important
to know the size of f,, although this is not necessary when
data have no long-term trend. To know a rough upper bound
of f,, we estimate the power spectrum of the original data.
Then we determine the frequency domain where the power
spectrum is almost white. This gives a good indication of the
rough upper bound of the frequency domain to randomize
[25].

Also, as mentioned above, we increase f, to randomize
the phases from higher domain to lower domain step by step.
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As f, increases, we need to inspect whether linearity and
long-term trends are preserved in the surrogate data, al-
though this is not necessary when the data have no long-term
trend. In addition to visual inspection, we check the AC of
the original data and the surrogate data. If we have infinite
data, linearity and long-term trends are preserved, and the
AC of the original data is identical to that of surrogate data
and falls within the distribution of surrogate data as well.
However, this is not the case in practice. Convergence to the
same power spectrum is not actually guaranteed even under
the IAAFT method for a finite number of data points. How-
ever, we observe that even if estimates of the power spectra
are not identical, the global behavior of the AC of surrogate
data is almost identical (or very similar) to that of the origi-
nal data [9]. We find that especially when data have long-
term trends, this is more common. We inspect the AC at time
lag 1 because the AC at time lag 1 must be most sensitive to
the nature of the data. Hence, we inspect whether the AC of
the original data at time lag 1 falls within or outside the
distribution of surrogate data. When the AC falls within the
distribution, we consider that linearity and long-term trends
are sufficiently preserved in the surrogate data, and then cal-
culate the AMI. When the AC falls outside the distribution,
we consider that linearity and long-term trends are not well
preserved in the surrogate data. Then, we do not use the data,
stop increasing f,, and adopt the last result (this is the case of
using the widest f, in the successful application). We note
here that even if the AC of the original data at time lag 1 falls
outside the distribution of surrogate data, the global behavior
of the AC is usually similar.

VI. NUMERICAL EXAMPLES

We now demonstrate the application of our algorithm and
confirm our theoretical arguments with several cases. As ir-
regular fluctuations we consider a linear autoregressive (AR)
model and the Tkeda map. In all cases, the number of data
points used is 4096, and the data are both noise-free and
contaminated by 10% Gaussian observational noise.

A. Irregular fluctuations with no trend

The first application is to data with no trend. Irregular
fluctuations are generated by following two models:

(i) The linear AR model given by x,=a;x,_;+aex,_¢+ 7
[21], where we use a;=0.3, ag=0.2, and 7, is Gaussian dy-
namical noise with standard deviation 1.0.

(ii) The Tkeda map given by

f(x,y) = (1 + u(x cos -y sin ), u(x sin 8+ y cos 6)),

where =a-b/(1+x>+y?) with ©=0.83, a=0.4, and b=6.0
[22].

In each case we use x, as the observational data. When the
data have no trend, this application of the TFTS method is
essentially the same as that of the original IAAFT method.
Hence, we do not describe any result of the linear AR model
because the result obtained by applying the TFTS method to
linear data is obvious. However, to demonstrate our premise
that the superposition principle is not valid for nonlinear
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data, we show the result of the Ikeda map under a rather
difficult case, where data are contaminated by 10% observa-
tional noise and f,=0.01 (that is, phases only in 1% fre-
quency domain are randomized) [26]. The AMI of the Tkeda
map data falls outside the distributions of the surrogate data,
which indicates that the data are not linear [27]. We note that
some differences clearly appear when the time lag is rela-
tively small because phases in only the high-frequency do-
main are randomized and the information in the system is not
retained for longer periods of time. In all cases, we can dis-
criminate all data correctly.

B. Irregular fluctuations with trends

The second application is to data with trends. Data gen-
erated using the same models as above are added to the ar-
tificial trends, and the level of additional data to the trends is
equivalent to 10% (20 dB) observational noise at each case.
See the behaviors in Fig. 1(d). Also, we use random-walk
(RW) data. The model of a RW can be given by

x(r+1) =x(1) + 7(1),

where 7(r) is Gaussian random numbers with standard de-
viation 1.0. It is well known that as RW will exceed any
bounds after finite time, they are treated as nonstationary,
although the structure of the formula remains unchanged
[11]. Hence, linear surrogate methods do not work for RW
data. We apply the STFTS method to these data as an ex-
treme case to demonstrate our premise.

When irregular fluctuations are the linear AR model data,
the data are noise-free and f,=0.99 (that is, only 1% fre-
quency domain is untouched) [28], the behavior of the AC of
the original data and the surrogate data is very similar, and
the AC of the original data at time lag 1 falls within the
distribution of the surrogate data like that shown in Figs. 7(d)
and 7(e). This fact indicates that linearity and long-term
trends in the original data are preserved in the surrogate data,
even when f,=0.99. The AMI of the original data falls
within the distribution of the surrogate data like that shown
in Fig. 7(f). Hence, we conclude that we cannot detect non-
linearity in irregular fluctuations: this is the correct result.
When we randomize over a smaller f,, the results are essen-
tially the same. Also, when we use RW data, the results
indicate that the irregular fluctuations are linear, where the
rough upper bound of f, seems to be 0.8 and we obtain the
consistent results up to f,=0.9.

With irregular fluctuations from the Ikeda map data,
noise-free data, and f,=0.01, the AC of the original data is
almost identical to that of the surrogate data and the AC of
the original data at time lag 1 falls within the distribution of
the surrogate data. This result indicates that linearity and
long-term trends in the original data are adequately pre-
served in the surrogate data. However, even when f,=0.01,
the AMI of the original data falls outside the distribution of
the surrogate data [like that shown in Fig. 7(c)]. Hence, we
consider that the irregular fluctuations include nonlinearity,
which is the correct result. When the time lag is larger, the
behavior of the AMI of the surrogate data is very similar to
that of the original data. This indicates that the local struc-
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FIG. 3. (Color online) (a) Segments of the surrogate data and (b)
a plot of AMI for the NMR laser data: We use f,=0.1 and 99
surrogate data. The solid line is the original data and dotted lines are
the surrogate data.

tures are destroyed and the global structures are preserved in
the surrogate data. When data are contaminated by 10% ob-
servational noise, we can still detect linearity and nonlinear-
ity in irregular fluctuations correctly by applying our method.

The above results show that when irregular fluctuations
are linear, the AMI of the original data falls within the dis-
tributions of the surrogate data. When irregular fluctuations
are nonlinear, the AMI is distinct and falls outside of the
distributions. Therefore, applying the TFTS and STFTS
methods can detect whether irregular fluctuations are linear
or nonlinear using AMI.

VII. APPLICATIONS

Based on the result of these computational studies, we
apply the proposed method to three experimental systems: (i)
nuclear magnetic resonance (NMR) laser data, which have
been known to be nonlinear [14]; (ii) monthly global average
temperature (MGAT) from September 1920 to December
2005; and (iii) monthly sunspot numbers (MSN) from Janu-
ary 1749 to 10 August 2004. The MGAT and MSN data seem
to have trends. See Figs. 1(a)-1(c), respectively. We use
2048 data points for the NMR laser data and the MSN data,
and 1024 data points for the MGAT data. We apply the TFTS
method to the NMR laser data because the data have no trend
and the symmetrized TFTS (STFTS) method to the MGAT
and MSN data because the data have long-term trends and
there is the end-point mismatch.

Figure 3 shows a segment of the surrogate data of the
NMR laser data and the result, where we use f,=0.1 (that is,
we randomize phases in the highest 10% frequency domain).
Figure 3(a) shows some difference between the original data

026205-5



NAKAMURA, SMALL, AND HIRATA

=

1 T T T T T T
g 107§ E
2
G —2
L107F E
%]

g -
Z107F E

o

10—4 1 1 1 1 L 1
0 100 200 300 400 500
Frequency

(b)

T T T T T T
1L a
S 10

g
2 10°F 3
%]

@ —1
210 F E
(o]
o
107%F ‘ ‘ , . L3
0 200 400 600 800 1000
Frequency

FIG. 4. The estimated power spectrum of (a) MGAT data and
(b) MSN data.

and the surrogate data, and Fig. 3(b) shows that the AMI of
the NMR laser data fall outside the distributions of the sur-
rogate data. Hence, we consider that the NMR laser data are
nonlinear. This result is in agreement with the previously
obtained understanding of the data [14]. We note that al-
though we do not randomize all phases like the IAAFT
method, we still obtain consistent results.

We now apply the STFTS method to the MGAT and MSN
data. We increment f, in steps of 0.05. To know a rough
upper bound of f,, we first estimate the power spectrum of
the data. Figure 4 shows that the power seems to be white
when the frequency is larger than around 100 for both data
sets. The result indicates that the rough upper bound of f, is
0.8 for the MGAT data and 0.9 for the MSN data. Hence, we
may increase f, at most up to the upper bounds, if the AC of
the original data at time lag 1 falls within the distribution of
surrogate data. When we apply the method, we find that the
AC of the MGAT and the MSN data at time lag 1 falls
outside the distribution of the surrogate data when f,=0.6
and 0.3, respectively. These values are smaller than the upper
bounds for both the data.

TABLE 1. Frequency domain when the null hypothesis is re-
jected and not rejected. The R indicates that the null hypothesis is
rejected and the NR indicates not rejected. Hence, R implies that
our method detects some kind of nonlinearity in the irregular fluc-
tuations, and NR implies that our method fails to detect it. In all
results shown in this table, the AC of the original data at time lag 1
falls within the distribution of surrogate data.

Frequency domain f,

NR R
MGAT data 0.05-0.3 0.35-0.55
MSN data 0.05-0.25
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FIG. 5. Surrogate data of time series shown in Figs. 1(b) and
1(c). (a) MGAT data and (b) MSN data.

We show all results in Table I when the AC at time lag 1
falls within the distribution. When the data are the MGAT
time series, the null hypothesis is not rejected between 0.05
and 0.3 of f,, and the null hypothesis is rejected between
0.35 and 0.55 continuously. When the data are the MSN time
series, the null hypothesis is not rejected between 0.05 and
0.25. As mentioned previously, we adopt the last result.
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FIG. 6. (Color online) An enlargement of the original data and
one of the surrogate data. (a) MGAT data and (b) MSN data, where
the solid line is the original data and the dotted line is the surrogate
data.
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correspond to the AC at time lag 1 of the original data and the surrogate data, respectively. In (b), (c), (e), and (f), the solid line is the original

data and the dotted lines are the surrogate data.

Hence, we show results for the MGAT data when f,=0.55
and for the MSN data when f,=0.25. Figure 5 shows the
surrogate data for the MGAT and MSN data. Figures 5(a)
and 5(b) show very similar behavior to Figs. 1(b) and 1(c),
and this indicates that the global behavior is preserved in the
surrogate data. However, as Fig. 6 shows, local structures are
different between the two. Figure 7 shows the AC and the
AMI of the MGAT data, the MSN data, and the surrogate
data. Figures 7(a) and 7(d) show that the AC of the original
data falls within the distribution of the surrogate data in both
cases. Figures 7(b) and 7(e) show that the AC of the original
data is almost identical to the surrogate data. From these
figures we conclude that linearity and long-term trends are
preserved in the surrogate data. Figure 7(c) shows that the
AMI of the MGAT data falls outside the distribution of the
surrogate data, and Fig. 7(f) shows that the AMI of the MSN
data falls within the distribution of the surrogate data. Hence,
we consider that we can detect nonlinearity in irregular fluc-
tuations of the MGAT data and we cannot detect that of the
MSN data.

VIII. CONCLUSION

By taking advantage of different features of linear and
nonlinear data, we described an algorithm to provide data
sets for testing nonlinearity in irregular fluctuations. The ma-
jor difference from previously proposed linear surrogate
methods is that we do not randomize all phases but random-
ize phases of the higher-frequency domain only. This method
can be applied to data even if they exhibit long-term trends.
Our arguments and computational examples show that this
algorithm succeeds in testing nonlinearity and discriminating
well between linear and nonlinear data.
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